Mahbuba Tasmin

PhD Candidate in Computer Science (Computational Biology & Machine Learning), UMass Amherst 413-479-9565 | mtasmin@umass.edu | linkedin.com/in/mahbuba-tasmin | github.com/Tasmin153 | Google Scholar

EDUCATION

University of Massachusetts Amherst

Amherst, MA

Ph.D. Candidate in Computer Science (Advisor: Prof. Anna Green)

Expected Graduation: May 2027

- Research Interests: Resistance Forecasting, Explainable ML, Protein Language Models, Structural Bioinformatics
- CGPA: 3.9/4.0
- Awards: Sudha and Rajesh Jha Scholarship, 2023
- Relevant Coursework: Advanced Algorithms, Machine Learning, Neural Networks, Computational Biology, AI, Information Assurance, Computer Architecture; Teaching for Tomorrow's Faculty; ML for Biological Sequence Data

University of Massachusetts Amherst

Amherst, MA

M.S. in Computer Science

Sep. 2022 - May 2025

- Thesis aligned with Ph.D. research on antibiotic resistance modeling.

North South University

Dhaka, Bangladesh

B.S. in Computer Science and Engineering (Summa Cum Laude)

Jan. 2016 - Dec. 2019

• Concentration: Artificial Intelligence and Algorithms; CGPA: 3.89/4.0

Research Experience

Graduate Research Assistant

Sep. 2022 – Present

SAGE Lab, University of Massachusetts Amherst

Amherst, MA

- Lead researcher on **BIG-TB**: a multimodal benchmark dataset (~17K isolates) for *M. tuberculosis* antibiotic resistance prediction across 11 WHO-priority drugs.
- Designed sequence- and structure-aware models: CNNs, Transformers, and fused-ridge baselines using DNA/protein features, and ESM embeddings.
- Constructed multi-species augmentation pipelines (UniProt, InterPro) to enhance protein generalization via evolutionary data.
- Performed explainability analyses with SHAP and causal variant recovery (recall@k) against WHO 2023 catalog.
- Lead researcher on Forecasting Antibiotic Resistance Using Biophysics and Machine Learning, supporting integrative modeling of resistance-conferring variants using protein thermostability and machine learning.
- Collaborated with cross-institutional researchers (Harvard DBMI, Farhat Lab) on multi-gene model reproducibility and benchmarking.
- Formulated and optimized a Fused Ridge Regression framework with convex regularization, fusion penalty, and enhanced gradient descent (momentum, clipping, Nesterov) for protein structure—aware resistance modeling.

Industry Experience

AI Engineer

Mar. 2022 – Jul. 2022

NITEX Solutions Ltd.

M2SYS Technology

Dhaka, Bangladesh

Dhaka, Banqladesh

- Implemented Detectron2-based instance segmentation for product identification and OCR-based automation tools.
- Built fashion trend moodboards combining NLP and computer vision pipelines for workflow automation.

Software Engineer (AI & ML)

Jul. 2020 – Feb. 2022

- Developed image spoofing detection and contextual recommendation systems using ML and NLP techniques.
- Automated backend workflows with Camunda and deployed production ML models across distributed systems.

Selected Publications

Green, A. G., Tasmin, M., Vargas, R., Farhat, M. R.

The structural context of mutations in proteins predicts their effect on antibiotic resistance.

Submitted to eLife. Preprint: bioRxiv 2025.09.23.676583 (2025)

Tasmin, M., Green, A.

Beyond Sequence-only Models: Leveraging Structural Constraints for Antibiotic Resistance Prediction in Sparse Genomic Datasets.

ICLR 2025 MLGenX Workshop (2025)

Yang, Z., Yao, Z., Tasmin, M. et al.

Unveiling GPT-4V's hidden challenges behind high accuracy on USMLE questions.

J Med Internet Res (2025)

Talks and Presentations

BIG-TB: A Benchmark Dataset for Genomic Resistance Prediction and Interpretability in Mycobacterium tuberculosis

Machine Learning for Computational Biology (MLCB) Workshop, 2025

Spotlight talk presented highlighting dataset design and explainability analyses.

Protein Structure-Informed Regularized Linear Model Outperforms ESM for Predicting Antibiotic Resistance

Program in Quantitative Genomics Conference (PQG), Harvard University, 2024

Poster presentation demonstrating integration of 3D structural features with machine learning models.

Teaching Experience

Head Teaching Assistant

Fall 2025 – Spring 2025

CompSci 520: Theory and Implementation of Advanced Software Engineering

UMass Amherst

- Led 140+ students, managed teaching assistants, and coordinated course logistics.
- Maintained GitHub Classroom and Gradescope automation pipelines.

Course Developer Assistant

Summer 2023

CompSci 520: Theory and Implementation of Advanced Software Engineering

UMass Amherst

Revamped course structure, labs, and assignments with automated grading.

Honors and Awards

CRA-WP Grad Cohort for Women

2023

San Francisco, USA

TECHNICAL SKILLS

Tools & Languages: Python, Bash, R, LaTeX, pandas, NumPy, matplotlib, Git, Docker, Linux, SLURM

ML/AI: PyTorch, scikit-learn, XGBoost, CNNs, Transformers, Random Forests, SHAP

Bioinformatics: UniProt, InterPro, Rosetta, AAIndex, Protein Structure, VEP/ANNOVAR

Leadership & Mentorship

PhD Graduate Representative

Fall 2025

Student Representative in Faculty Senate

Shakir Sahibul

Suqi Hong

College of Computer & Information Sciences, UMass Amherst Fall 2024

Supervised Transformer-based resistance prediction project.

M.S. Student, UMass Amherst

Fall 2025

M.S. Student, UMass Amherst

Supervising EvoAug-based protein resistance prediction project.